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ABSTRACT

Aims: This work aimed to study the effect of noninvasive vagus nerve stimulation on severe restless legs syndrome (RLS) resistant
to pharmacotherapy.

Materials and Methods: Patients with severe pharmacoresistant RLS were recruited from a tertiary care sleep center. Inter-
vention was one-hour weekly sessions of transauricular vagus nerve stimulation (tVNS) in the left cymba concha, for eight weeks.
The primary outcome measure was the score on the International Restless Legs Rating Scale (IRLS); secondary outcome measures
were quality of life (Restless Legs Syndrome Quality of Life scale [RLSQOL]), mood disorders using the Hospital Anxiety and
Depression scale subscale for depression (HADD) and Hospital Anxiety and Depression scale subscale for anxiety (HADA), and
objective sleep latency, sleep duration, efficiency, and leg movement time measured by actigraphy.

Results: Fifteen patients, 53% male, aged mean 62.7 + 12.3 years with severe RLS, reduced quality of life, and symptoms of
anxiety and depression, were included. The IRLS improved from baseline to session eight: IRLS 31.9 + 2.9 vs 24.6 + 5.9 p = 0.0003.
Of these participants, 27% (4/15) had a total response with a decrease below an IRLS score of 20; 40% (6/15) a partial response
with an improvement in the IRLS > 5 but an IRLS above 20; and 33% (5/15) were nonresponders. After tVNS, quality of life
improved (RLSQOL 49.3 + 18.1 vs 80.0 = 19.6 p = 0.0005), as did anxiety (HADA 8.9 + 5.4 vs 6.2 + 5.0 p = 0.001) and depression
(HADD 5.2 + 4.5 vs 4.0 £ 4.0 p = 0.01). No significant change was found in actigraphic outcome measures.

Conclusions: In this pilot study, tVNS improved the symptoms of RLS in 66% of participants (10/15) with severe pharmacor-
esistant RLS, with concomitant improvements in quality of life and mood. Randomized controlled trials evaluating therapeutic
efficacy of tVNS in RLS are needed to confirm these promising findings.
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the evenings, increased by immobility and decreased by moving
the limbs,? is accompanied in 80% of patients by periodic leg

INTRODUCTION

Restless legs syndrome (RLS) is a relatively frequent condition,
occasionally affecting approximately 7% of the population. In 2% to
3% of the population, the symptoms are sufficiently severe to

movements during sleep, when regular foot and leg flexion can
fragment sleep.® Treatments for severe idiopathic RLS include
dopamine agonists, alpha 2 delta ligands, and opiate analgesics.”

require treatment.’ The classic presentation of limb discomfort in ~ Despite optimal treatment and in the absence of augmentation
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syndrome, some patients have intractable symptoms that are
difficult to manage® despite frequent changes of treatment,® are a
source of great suffering, and can lead to a reduced quality of life,
mood disorders, and an increased risk of self-harm.” Patients with
RLS have been shown to have increased cardiovascular risk.® This
may be linked to autonomic dysfunction found in patients with
RLS.? Analysis of heart rate variability (HRV) shows modified sym-
pathovagal regulation in patients homozygous for rs2300478 in the
MEIS1 locus, with sleep fragmentation during periodic leg move-
ments leading to sympathetic activation.'® Vagus nerve stimulation
(VNS) has been shown to be beneficial in epilepsy, depression,
chronic pain, and inflammatory diseases. Studies show that VNS
modulates activity in the nucleus tractus solitarius, which projects
to many areas of the brain, including the locus coeruleus, amyg-
dala, hypothalamus, nucleus accumbens, prefrontal cortex, peri-
aqueductal gray, postcentral gyrus, and insula.'’ Both VNS using
implanted stimulators and transauricular vagal nerve stimulation
(tVNS) using low dose electrical stimulation of the external area of
the ear innervated by the auricular branch of the vagal nerve have
been shown to reduce epileptic seizure frequency and to modulate
pain perception.'” tVNS has also shown effects on mood, with
reduced depression. It has been suggested that these effects on
mood may also modulate pain perception.'>'* Given the effec-
tiveness of new antiepileptics in the treatment of RLS and the
anticonvulsant effect of VNS, there has been interest in the effects
of VNS on RLS. A single case of treatment by vagal nerve stimu-
lation was reported by Merkl in a patient with depression and RLS,
treated with duloxetine, with a decrease in symptom severity
measured by the International Restless Legs Rating Scale (IRLS)
from 19 to 8."

We hypothesized that treatment by tVNS would reduce the
symptoms of RLS. The aim of this nonrandomized pilot study was
to evaluate the feasibility and the effect of tVNS on patients with
severe RLS despite optimal pharmacotherapy. The primary
outcome measure was the effect on RLS measured by the IRLS.
Secondary outcome measures included the effect of tVNS on sleep,
leg movements, quality of life, and mood, and feasibility (recruit-
ment, retention, and delivery of stimulation in the hospital setting).

MATERIALS AND METHODS

Patients

Fifteen patients with RLS were included in this pilot study
between June 2020 and May 2021, in a tertiary care sleep center.
The study was approved by our local ethics committee, number
international review board (IRB): IORG0009855, and conducted in
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pharmacotherapy

Absence of
augmentation syndrome

Actigraphy

Figure 1. Flow chart of study protocol. [Color figure can be viewed at www.neuromodulationjournal.org]
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compliance with good clinical practice guidelines and the Decla-
ration of Helsinki. All participants provided written informed con-
sent. The study is part of the SMART-VNS™ Project: A Structured
Multidisciplinary program for Advanced Research in Vagus Nerve
Stimulation Therapy.

The inclusion criteria were severe RLS following international
diagnostic criteria® with an IRLS > 20 despite optimal pharmaco-
therapy, absence of augmentation syndrome as defined by inter-
national agreed criteria,'® and a ferritin level > 50 ug/L. Optimal
pharmacotherapy was defined for each patient as treatment by
dopamine agonists, alpha 2 delta ligands, and opiate analgesics
(either as monotherapy or combination therapy) that was the most
successful at reducing symptoms over the past year. Patients taking
doses of dopamine agonists above recommended levels were
temporarily excluded until doses had been reduced, owing to the
high risk of augmentation syndrome (pramipexole > 0.36 mg,
Ropinirole > 2 mg, Rotigotrine > 2 mq). The exclusion criteria were
pregnancy and breastfeeding, known psychiatric disorders, treat-
ment by a molecule known to exacerbate RLS, and lack of health
insurance.

All patients were reviewed by a senior sleep physician before
inclusion. Patients were asked not to change their medication
during the study. The study was approved by our local ethics
committee, number IRB: IORG0009855, and conducted in compli-
ance with good clinical practice guidelines and the Declaration of
Helsinki. All participants provided written informed consent.

Study Design and Procedures

This was an open-label pilot study comprising eight one-hour
sessions of tVNS over eight weeks. After informed consent and
inclusion, each session consisted of completion of questionnaires
followed by a one-hour-long tVNS protocol. In addition, during
weeks 1 and 2 and weeks 7 and 8, participants wore two actigraphs
(AWD4, CamNtech, Cambridge, UK), one on the nondominant wrist
and one on the ankle (Fig. 1).

Interventions

tVNS was performed using a standardized protocol and is
described following the international guidelines for VNS studies.'®
Intervention was one-hour weekly sessions of tVNS in the left
cymba concha, over eight weeks. We chose a weekly hour-long
stimulation protocol to maximize study participation.

Transcutaneous noninvasive stimulation of the auricular branch
of the vagal nerve using a TENS eco Plus (Schwa-medico, Ehring-
shausen, Germany) was performed using a constant voltage,

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 k "
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VNS FOR DRUG-RESISTANT RLS

afferent unidirectional stimulation in the left anterior cymba
conchae. The stimulation parameters used were 2 Hz frequency,
200-millisecond symmetric square wave impulse width, and
intensity range between 2 mA and 7 mA, depending on patient
sensitivity. Current was titrated starting at an intensity of 2 mA in
the first session, to achieve effective stimulation without stimula-
tion causing pain or discomfort. The electrode used was individu-
ally designed to maximize cutaneous contact, using an anode and
cathode composition with a brass 3-dimensional (3D) printed
flexible electrode using thermodynamic polyurethane fibers. Indi-
vidualized electrode printing was performed with a 3D Flashforge
inventor (Flashforge, Jinhua, China). Each session of tVNS lasted an
hour, with simultaneous electroencephalogram (EEG) monitoring
to observe the stimulation artifact during the session. At the end of
the study, all patients were offered portable tVNS to enable them to
continue weekly stimulation at home.

Testing and Outcome Measures

The primary outcome measure was the score on the IRLS, which
evaluates the severity of RLS symptoms on a scale of 0 to 40 over
the last seven days, in which a score > 20 is considered severe. The
IRLS was initially validated as a clinician administered question-
naire'’; we used it as a self-administered questionnaire, which has
been shown to be reliable and valid compared with the clinician-
administered version.'®

Secondary outcome measures were quality of life as measured
with the Restless Legs Syndrome Quality of Life scale (RLSQOL),'®
using a French translation developed using the standard tech-
nique of translation and backtranslation. The RLSQOL summary
score is calculated based on items 1 to 5, 7 to 10, and 13. Each five-
point scale is coded so that 1 equals most severe and 5 equals least
severe. The score is then transformed to a 0 to 100 score. Higher
scores on the RLSQOL score indicate a higher quality of life. The
RLSQOL shows good test-retest reliability and is sensitive to small
clinical changes.”®

Mood disorders were assessed using the Hospital Anxiety and
Depression scale subscale for depression (HADD) and Hospital
Anxiety and Depression scale subscale for anxiety (HADA), trans-
lated and validated in French.?" In the adult population, a score < 8
on each subscale is considered to indicate the absence of anxiety
or depression.”?

Sleep latency, sleep duration, sleep fragmentation, and leg
movements were measured by actigraphy using two actigraphs
(AWD4 CamNtech, Cambridge, UK), one on the nondominant wrist
and one on the ankle during the night. Patients wore the actigraphs
for two weeks at the beginning and two weeks at the end of the
study. Actigraphs were worn only at night; patients were asked to
put on the actigraphs when going to bed. Data were analyzed for
week 1 and week 8. Simultaneous sleep diaries were completed to
estimate lights out and lights on for each night. Analysis was per-
formed using the validated sleep analysis tool (CamNtech) with
night-by-night correction for lights on and lights off. Wrist-worn
actigraphy was used for sleep parameters, with visual verification
of sleep onset enabling calculation of sleep latency and sleep
duration. The fragmentation index was defined as the sum of the
moving time (%) plus immobile bouts lasting < 1 minute (%) present
during the period of actigraphically defined sleep, and is considered
a measure of sleep fragmentation. Ankle-worn actigraphy was used
to measure leg movements; moving time was calculated as the
mobile time expressed as a percentage of time in bed.

Adverse effects were monitored assessing heart rate, blood
pressure, and questionnaires on the occurrence of pain, headache,
nausea, dizziness, intestinal upset, or other uncomfortable symp-
toms at each session.

Statistical Analysis

Data were collated in Excel (Microsoft, Redmond, WA) and
analyzed with MATLAB (MathWorks, Natick, MA). Quantitative data
were presented as means + SD, qualitative data as percentage (%).
Patients were considered responders if their final IRLS was < 20 and
partial responders if their IRLS score decreased by > 5. Chi® tests
were used to compare quantitative data and nonparametric tests
for paired data (Wilcoxon) for the IRLS, RLSQOL, HADD, and HADA.

RESULTS

Patients’ Characteristics at Baseline

Fifteen patients with RLS, (53% male) aged from 27 to 74 years,
mean 62.7 + 12.3 years, were included. All patients had severe RLS,
with a mean IRLS score of 31.9 + 2.9; symptoms had a negative
impact on their quality of life (mean RLSQOL 49.3 + 18.1), and
symptoms of depression (mean HADD 5.2 + 4.5) and anxiety (mean
HADA 8.9 + 5.4) were present (table 1).

Effect of tVNS on the Severity of RLS

The mean severity of symptoms of RLS measured by the IRLS was
significantly reduced from session 1 to session 8 (31.9 £ 2.9 vs
24,6 + 5.9, respectively) (table 2).

The correlation coefficient for the IRLS over time was r* = 0.13
(Supplementary Data Fig. S5). However, three distinct profiles were
identified: 27% of participants (4/15) had a total response with a
decrease below an IRLS score of 20, 40% (6/15) a partial response
with an improvement in the IRLS > 5 but an IRLS remaining above
20, and 33% (5/15) were nonresponders. We found that positive
effects on RLS were not observed by patients immediately but
instead toward the end of the protocol (Fig. 2).

Fourteen of the 15 patients opted to continue tVNS at home.

Effect of tVNS on Quality of Life, Anxiety, and Depression

A significant increase in the RLSQOL was observed between
baseline and session 8 (table 2). The mean baseline HADA score
was 8.9 + 54, indicating the presence of anxiety, and 60% of par-
ticipants had a score = 8. This was significantly reduced by session
8. The mean baseline HADD score was not in the pathological
range and once again significantly improved overall by session 8
(Fig. 3).

Effect of tVNS on Sleep and Nocturnal Leg Movements

Wrist actigraphy was used to measure sleep latency, sleep
duration, and sleep fragmentation. Mean sleep latency 44.4 + 35.9
vs 20.9 + 14.6 minutes p = 0.067 showed a nonsignificant trend
toward improvement, but no significant differences were found in
either estimated sleep duration or the fragmentation index (table
2). Ankle actigraphy was used to measure nocturnal leg move-
ments. No significant difference was found in either the percentage
movement time or the fragmentation index (Fig. 4).

Side Effects of tVNS
tVNS was safe and well tolerated. No side effects were reported
after the sessions. No significant differences were noted in
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Table 1. Individual Participant Baseline Data and Stimulation Intensity
Patient Sex Age Age at first  Treatment

) symptoms

\Y)

P1 M 73 35 Gabapentin, Tramadol, Codeine
P2 M 47 37 Gabapentin
P3 M 72 55 Rotigotine
P4 M 65 55 Pramipexole
P5 F 73 58 Pramipexole Tramadol
P6 M 71 52 Pregabalin Pramipexol, Tramadol
p7 F 69 50 Pregabalin
P8 M 62 51 Gabapentin
P9 M 67 60 Pramipexole Gabapentin
P10 F 62 48 Pregabalin Pramipexol, Tramadol
P11 F 62 50 Gabapentin
P12 F 27 22 Gabapentin
P13 M 69 40 Pregabalin Pramipexole, Codeine
P14 F 59 50 Pramipexole Gabapentin
P15 F 74 58 Pregabalin Pramipexole, Codeine
F, female; M, male.

Hour of onset IRLS RLSQOL HADA HADD Mean

of symptoms stimulation
with treatment intensity (mA)
20:00 36 25 11 10 5

00:00 30 75 3 0 6

02:00 31 62.5 12 7 5

19:00 36 50 7 5 4

16:00 30 475 8 2 3

16:00 31 67.5 6 1 4

18:00 32 525 9 7 3

01:00 32 70 3 2 5

00:00 35 77.5 8 5 7

00:00 29 775 5 2 4

21:00 29 57.5 17 7 5

20:00 29 50 15 8 3

13:00 33 35 5 6 4

19:00 33 40 15 1 4

21:00 38 75 21 17 6

individual heart rate or blood pressure either within individual
sessions or across the eight sessions.

Feasibility of tVNS

Information about the project was rapidly disseminated within
the patient community because the project was funded by a
patient group dedicated to RLS. Recruitment of patients was rapid,
with a long waiting list of patients keen to be participate. Delivering
weekly one-hour sessions within the physiology department
ensured that stimulation was effective, and required a technician
dedicated to tVNS working on several simultaneous research pro-
jects. Programs were timed to allow sequential eight-week sessions
by avoiding major holiday periods. No patient included in the study
dropped out, and questionnaire data were complete for all
patients, although some actigraphic records were incomplete
owing to patients forgetting to wear the actigraph or to technical
failure.

DISCUSSION

Our findings indicate that tVNS is successful in alleviating the
symptoms of RLS in approximately 66% of participants (10/15) with

severe pharmacoresistant RLS. Patients were required to continue
their baseline treatment during the treatment period so that
changes in symptoms could be attributed to tVNS. We also found
an increase in quality of life and a reduction in symptoms of anxiety
and depression. This concomitant improvement in quality of life
and mood with the symptoms of RLS after tVNS reflects the burden
of RLS. Moreover, we found delivering tVNS in the physiology
department setting to be feasible regarding recruitment, retention,
data handling, and the intervention. tVNS was safe and well
tolerated.

To our knowledge, this study is the first to look at the use of tVNS
in patients with restless legs, apart from a single case study
reported by Merkl.'* We included only patients with severe phar-
macoresistant RLS. Current medical treatments for RLS include iron
supplementation, dopamine agonists, alpha-2-delta (a26) ligand
antiepileptics, and opioids>**?’ but these are not always effec-
tive.>*® Dopamine agonists are probably the most effective treat-
ment but expose patients to the risk of developing augmentation
syndrome, with an incidence of 6% to 8% over six months and 9%
per year over ten years for patients treated by pramipexole.?*>°
Patients with augmentation syndrome were excluded from our
study because in these patients, withdrawal of dopamine agonists
is the first line of treatment.®' Poorly controlled RLS causes great

Table 2. Results of tVNS Treatment: Baseline vs End of Session Eight.

Outcome measures

IRLS

RLSQOL

Anxiety HADA
Depression HADD
Actigraphy wrist Sleep latency (min)
Estimated sleep time (h)
Fragmentation index
Moving time %
Fragmentation index

Actigraphy ankle

*Wilcoxon signed-rank test for paired samples.

Baseline

319+ 29
493 =181
89 54
52+45
444 + 359
84 +£55
62.3 £ 35
216 £ 192
632 =43

After 8th session of tVNS

246 £ 59
80.0 + 196
6.2 £50
40+ 40
209 146
8.1 +57
56.6 + 263
217 £ 176
62.8 + 36.3

p Value*

0.0003
0.0005
0.001
0.01
0.067
061
0.89
083
0.83
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Figure 2. Evolution of symptom severity measured by the IRLS. a. Individual evolution of symptoms across the eight sessions with mean indicated in black. b. Mean
evolution of symptoms at baseline (session 1) and at the final session (session 8). [Color figure can be viewed at www.neuromodulationjournal.org]

suffering to patients in whom chronic pain and continual leg
movements deprive them of sleep despite maximal treatment.*?
Pharmacoresistant RLS is relatively frequent: in a large study,
more than 8.5% of patients with RLS reported an increase in
symptom severity despite treatment of more than 5 points on the
IRLS.*® In many patients, despite careful assessment for secondary
causes of pharmacoresistance, no cause is found, and inadequate
symptom control despite frequent treatment change is a source of
suffering.®?

The underlying causes of RLS remain unclear.***> RLS has sensory
and motor manifestations: both circuits are modulated by
descending signals from the dorsal raphe, the locus coeruleus, and
the A11 region in the dorsal-posterior hypothalamus. The principal

neurotransmitter in the A11 nucleus is dopamine, which has both
excitatory and inhibitory effects depending on concentration,
receptor affinity, and receptor actions. Dopamine agonists that target
the inhibitory D3 subtype are, at least initially, effective in treating
RLS, although long-term treatment leads to upregulation of excit-
atory D1 receptors in the spinal cord and the development of
augmentation syndrome.>*** Iron deficiency plays a role in dopa-
mine function, with low iron concentrations in the substantia nigra in
RLS, and clinical improvements noted with iron treatment.>® Other
neurotransmitters play a role: adenosine forms inhibitory D1-A1
heterodimers in the basal ganglia and the spinal cord; iron deficiency
also leads to a hypoadenosinergic state, which would reduce the
presence of inhibitory heterodimers.>’*® Finally, the efficacy of a26
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Figure 3. Individual evolution across the eight sessions of secondary outcomes measures with mean indicated in black. a. Quality of life measured by the RLSQOL. b.
Anxiety measured by the HADA. c. Depression measured by the HADD. [Color figure can be viewed at www.neuromodulationjournal.org]
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ligands such as gabapentin and pregabalin implies a role for gluta-
mate because their action targets glutaminergic neurons in key
regions for the causation of RLS symptoms. It has been suggested
that the interplay between the dopaminergic and glutaminergic
systems through the effects of dopamine on the a amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid-receptor—evoked responses and
N-methyl-D-aspartate (NMDA)-receptor—evoked responses may also
explain the effectiveness of molecules that affect NMDA receptors,
notably tramadol and methadone.”

The mechanism by which tVNS influences RLS is not known.
However, tVNS is known to modulate pain perception and cortical
excitability.'"'? The vagus nerve comprises approximately 80%
afferent sensory fibers carrying information from the periphery to the
brain.*® In the central nervous system, the vagus primarily projects to
the nucleus of the solitary tract and releases excitatory neurotrans-
mitters (glutamate and aspartate), inhibitory neurotransmitter (y-
amino butyric acid [GABA]), acetylcholine, norepinephrine, and other
neuropeptides for signal transduction.*® The projections of the soli-
tary tract to brainstem nuclei (locus coeruleus and dorsal raphe
magnus) modulate serotonin and norepinephrine release to the
entire brain.*' There is experimental evidence for the role of the
vagus nerve in regulating a number of distinct, important physio-
logical pathways, including cerebral blood flow, melanocortin,
inflammation, glutamatergic excitotoxicity, norepinephrine, and
neurotrophic processes.”” Through efferent and afferent fibers, the
vagus nerve regulates numerous central and peripheral key
processes.”>*° It modulates monoaminergic nuclei in the brainstem,
with effects on the GABAergic, serotoninergic and dopaminergic
networks.'""'?*%*” On the basis of these properties, VNS has been
used for decades to treat epilepsy, depression, chronic pain, and
inflammatory diseases.'*'**”“® In light of the proven dysfunctions of
the dopaminergic and sensorimotor networks in the

pathophysiology of RLS, the therapeutic effects of VNS on RLS could
be at least partly explained by the above cited anticonvulsant,
serotonergic, and dopaminergic properties of the vagus nerve.

Changes in mood have been found in previous studies of tVNS;
indeed, VNS is used to treat depression (Kong et al*® for a review)
and has been shown to reduce anxiety in patients receiving VNS for
chronic pain.>® Improvements in mood could be due either to a
direct effect of tVNS or to a reduction in symptoms. In the latter
case, change would be found only in responders to tVNS. Our study
did not find this, but we note that the sample size was small.
Changes in mood can modulate nociception, and it is possible that
mood changes underlie the observed improvements in RLS
symptoms and RLSQOL. We were unable to show a significant
difference between RLSQOL or HADD/HADA in responders vs
nonresponders; it is possible that concomitant changes in mood
influenced the results.

We did not find changes in actigraphy, although there was a
trend to an improvement in sleep latency. Actigraphy tends to
overestimate sleep duration in the presence of long periods of
wake after sleep onset, which was often reported by patients with
RLS.>" However, we found an abnormally long mean sleep onset
latency of 44 minutes before tVNS, which normalized to a mean of
20.9 minutes after the last session, although this difference was not
significative. The estimated sleep duration was within normal limits,
but the fragmentation index both before and after tVNS remained
high, implying significant sleep fragmentation.

Patients with severe RLS not only feel the need to move their
legs before falling asleep and during periods of wake in the night,
but 80% of patients have also periodic leg movements (PLM).> Our
study funding did not include polysomnography, which permits
accurate measurement of PLM. A possible objective composite
measure of both movements during wake and movements during
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sleep (PLM) could be percentage moving time measured by
actigraphy during the period in bed. Changes in a patient over time
would potentially reflect an effect of treatment. We analyzed
moving time from lights out to lights on, which would include both
periods with PLM and periods of leg movement due to RLS during
wake. Although RLS symptoms vary from night to night, the night-
to-night variability of PLM in patients with severe RLS measured by
polysomnography has been shown to be low.>* To capture
potential variability in RLS symptoms, we performed actigraphy
across two weeks (weeks 1 and 2, and weeks 7 and 8) and analyzed
the results for week 1 and week 8. We did not indicate significant
changes in leg movements measured by actigraphy placed at the
ankle. We did not perform polysomnography before tVNS, and
thus, we do not know whether all patients had PLM during sleep at
baseline. Finally, we note that actigraphy using AWD4 actigraphs
placed on the ankle is not a sensitive measure of nocturnal
movements.”

Study Limitations

Our study is a small, nonrandomized pilot study designed to test
the feasibility and effect of tVNS in a population of patients with
severe RLS. Patients with pharmacoresistant RLS are distressed by
their symptoms and symptomatic despite regular changes of
medication, even when augmentation syndrome has been
excluded. The feeling that no more treatment modalities are
available is a source of stress, and inclusion in our study was a relief
to many, increasing the possibility of a placebo effect on RLS
symptoms, mood, and quality of life. Without a randomized
controlled design, we cannot confirm that the improvements in
symptoms were due to tVNS. There is no biomarker for RLS, but we
measured changes in symptoms on a validated autoquestionnaire,
the IRLS, which is the reference standard for studies of treatment in
RLS. We did not use sufficiently sensitive actigraphy to determine
whether leg movements were affected by treatment. We were not
able to show a difference in secondary outcomes linked to
responder profile, which may be attributed to the small size of the
responder vs nonresponder subgroups. By performing stimulation
sessions in a hospital setting, we were able to control the quality of
stimulation, but this limited the frequency of sessions.

Finally, no consensus exists on a biomarker of effectiveness of
tVNS.'® In this study, we monitored the presence of each stimula-
tion during the sessions using the stimulation artifact measured
through EEG recording. Measuring effectiveness of tVNS through
HRV assessment, specifically the low frequency:high frequency
(LF:HF) ratio, could have been an option; however, studies of left-
ear tVNS have found heterogenous results with both a
decrease®°> and increase of the LF:HF ratio.”*>” We will measure
HRV parameters in our upcoming randomized study, which will
have a larger sample size.

Our study found that tVNS was feasible in the setting of a
neurophysiology department. Challenges to delivering tVNS for
patients with RLS are centered around the need for trained tech-
nicians and appropriate stimulation and monitoring equipment.
We did not find recruitment or retention to be a problem; indeed,
our study was so popular that we rapidly built up a waiting list.
Patients found the titration phase of tVNS slightly uncomfortable
because the current was progressively increased, but of the
patients recruited for the study, all finished the eight sessions and
were offered the use of an individually programmed stimulator for
ambulatory use. We do not know the optimal frequency or timing

of tVNS sessions for RLS; our choice of one session a week during
the day was chosen to optimize patient adherence and technician
time. Studies in chronic gastroenterologic pain have used multiple
daily sessions.”®*° Future studies will look at reducing in-hospital
sessions and increasing the use of ambulatory sessions, which
will enable us to increase the frequency of stimulation to reduce
technician time per patient and to increase cost-effectiveness.

CONCLUSIONS

RLS is responsible for chronic pain, prolonged sleep onset
latency, sleep fragmentation, and anxiety-depressive disorders and
has a major impact on the quality of life.?® This pilot study of tVNS
in patients with severe pharmacoresistant RLS shows that weekly
sessions of one-hour tVNS for eight weeks improve symptoms,
mood, and quality of life without significant side effects. Further
randomized controlled trials of tVNS in RLS are necessary to
confirm a positive effect in RLS.
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COMMENT

In this study the authors report of the effects of VNS on severe RLS

resistant to pharmacotherapy. The authors found that one-hour
weekly sessions of tVNS over eight weeks, significantly improved
quality of life, anxiety, and depression scores in two-thirds of treated
patients. The manuscript is well written, and the results provide a
framework for modifying current clinical practice in the treatment of
pharmacoresistant RLS.
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